United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

029-0009-0023

1. Name of Property
historic name: Republican River Pegram truss
other names/site number: Republican River Pegram Truss

2. Location
2 miles north of intersection of K9 and F.A.S. 566 on Route 796
street & number: not for publication
city, town: Concordia
county: Cloud
code: KS
state: Kansas
zip code: 66901

3. Classification
Ownership of Property: [] private
[X] public-local
[] public-State
[] public-Federal

Category of Property: [] building(s)
[X] district
[] site
[] structure
[] object

Number of Resources within Property
Contributing: [] buildings
Noncontributing: [] sites
[] structures
[] objects
[] Total

Name of related multiple property listing:
Metal Truss Bridges In Kansas

4. State/Federal Agency Certification
As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60.

In my opinion, the property [X] meets [] does not meet the National Register criteria. [] See continuation sheet.

Signature of certifying official

State or Federal agency and bureau

Date
Nov. 16, 1999

5. National Park Service Certification
I, hereby, certify that this property is:
[] entered in the National Register.
[] See continuation sheet.
[] determined eligible for the National Register. [] See continuation sheet.
[] determined not eligible for the National Register.
[] removed from the National Register.
[] other, (explain:)

Signature of the Keeper

Date of Action
The Republican River Pegram Truss bridge is made up of three spans. Two double intersection Warren trusses, both 128 feet long, and a 203 foot long Pegram truss. The roadway is 15 feet wide. The bridges rise 20 feet above the level of the river. The members of a truss bridge are designated either as chord members or web members. Chord members are those mainly defining the outlines of the structure and they are termed lower or upper chord members depending on whether they are found at the bottom or the top of the structure. Members between the chords are web members. They are called posts or ties if they sustain compression or tension respectively. In the instance of the double intersection Warren trusses, the structure in indeterminate, members act in both compression as well as tension. Two triangular web systems are superimposed upon each other. They could also be termed lattice bridges. In the case of the Pegram truss, it is a hybrid between the Warren and Parker trusses with the upper chords all being equal length.

The inclined end posts and top chord of the double intersection Warren trusses are fabricated from sections of channel iron, tied together by single bar lattice. The girders thus formed are topped with a steel or iron cover plate. Diagonals alternate between sections of angle plate riveted to a steel or iron cover plate and angle plate tied together with flat horizontal bars. Upper lateral struts are fabricated of single bar lattice and angle plate. The portal bracing is fabricated from angle stock and forms an interlocking triangle design. The Pegram truss, the inclined end posts and polygonal top chord are fabricated from channel plate, tied together by bar lattice and topped with a cover plate. Likewise, the compression posts are fabricated from channel plate and tied together with bar lattice. Ties consist of flat eye bars. Upper lateral bracing is formed from angle stock and bar lacing. The portal bracing is formed from angle stock and bar lattice. The structure is pin connected.

Although the bridge was initially constructed to service rail traffic and has been modified to highway vehicular traffic, those modifications have not adversely affected its structural integrity.
The great evolution of truss bridge construction began in the United States soon after the publication of Squire Whipple's historic work on stresses in 1840. Prior to this the design work was essentially that of trial and error, experience and judgement. The Warren and Pratt trusses were rational designs and lent themselves readily to the system of analysis postulated by Whipple. They were, therefore, readily and rapidly accepted and formed the foundation for a greater part of American truss design. The double intersection Warren truss and the Pegram truss were both modifications of the original Warren and Pratt designs.

Republic river bridge was erected in 1893 by Edge Moore Bridge Works of Wilmington, Delaware as a railroad bridge. The crossing was first used by the Junction City and Fort Kearney Railroad. The remains of bents in the river likely represents the presence of the structure that predated the present one. At an undetermined date the route was abandoned and the crossing turned over to vehicular traffic.

Edge Moore Bridge Works started fabrication in 1873, although the iron works was in operation earlier. It was acquired by American Bridge Company in 1900. One of their specialties was the erection of railroad bridges.

The Pegram truss and the double intersection Warren trusses represent the only example of such designs on the Kansas road system. Although not currently used for its original purpose it is an excellent example of adaptive reuse by local communities. It offers the unique opportunity to experience two different modes of transport, vehicular and rail.

The Kansas Department of Transportation (KDOT) carried out a statewide inventory of historic bridges between 1980 and 1983. The bridges to be included were identified through computer printouts developed by KDOT, from information supplied by the counties (since almost all of the historic

[See continuation sheet]

Dan G. Deibler, A Survey and Photographic Inventory of Metal Truss Bridges in Virginia, Charlottesville: Virginia Highway & Transportation Research Council, 1975.

Previous documentation on file (NPS):

☐ preliminary determination of individual listing (36 CFR 67) has been requested
☐ previously listed in the National Register
☐ previously determined eligible by the National Register
☐ designated a National Historic Landmark
☐ recorded by Historic American Buildings

Survey #
Record #

Primary location of additional data:
X State historic preservation office
☐ Other State agency
☐ Federal agency
☐ Local government
☐ University
☐ Other

Specify repository:
Kansas State Historical Society

10. Geographical Data

Acreage of property less than one acre

UTM References

A [1.4] 6[2.2][7.0.0] 4[3][8.3][7.0.0]
Zone Easting Northing

B [] [] [] [] [] []
Zone Easting Northing

C [] [] [] [] [] []

D [] [] [] [] [] []

☐ See continuation sheet

Verbal Boundary Description
The nominated property is located on the SE 1/4, SE 1/4, SW 1/4, SW 1/4, section 20, township 5S, range 2W, on a tract measuring 459' x 15' whose northeast corner is represented by the northeast corner of the bridge. Beginning at the northeast corner the boundary proceeds 459 feet southwest, 15 feet northwest, 459 feet northeast, and 15 feet southeast to the point of beginning.

☐ See continuation sheet

Boundary Justification
The boundary includes only that area that is historically associated with the nominated property.

☐ See continuation sheet

11. Form Prepared By

Name/title Larry Jochims
Organization Kansas State Historical Society
date September 20, 1989

street & number 120 W. 10th
telephone (913) 236-3251

city or town Topeka
state KS
zip code 66612
bridges were located on secondary rather than primary road system), and by
direct observation by field personnel. All bridges were inspected by KDOT
personnel to verify the data on file. That information was jointly
evaluated by representatives of KDOT, Kansas State Historical Society, and
the State Historic Preservation Officer.

Each structure was evaluated using a points rating system adapted from
the points evaluation rating developed by the Ohio Department of
Transportation and Ohio Historic Preservation Office. Consideration was
given to areas such as age, builder, number of spans, length, special
features, history, integrity, surviving numbers, and preservation
potential.

In many instances there is little information about individual
structures. Often bridge plaques which may have contained information have
been removed, or the county's records are not complete or have been
destroyed. Due to the large numbers of similar structures there is often
little to choose from in differentiating among individual bridges other
than condition and the likelihood of preservation.

The purpose of the KDOT study and subsequent evaluation was to
identify a representative selection of bridges of each class. Through this
approach KDOT and KSHS hope to preserve for posterity some examples of each
type.